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A B S T R A C T  

We study minimal flows by studying a universal minimal flow, invari- 
ant closed equivalence relations (icers) on it, subgroups of its group of 
automorphisms, and the interplay among these objects. As examples of 
this approach we discuss and give short proofs of some standard results 
on distal flows. We end with a statement of the Furstenberg structure 
theorem from this point of view. 

1. I n t r o d u c t i o n  

In this paper we expound the classical theory of minimal flows from the point of 

view of invariant closed equivalence relations (icers) on the universal minimal set 

M. By a flow we mean a compact Hausdorff space, X, upon which a topological 

group T (fixed for the duration of the paper) acts on the right. In the situations 

considered here there is no loss of generality if T is given the discrete topology. 

As usual a flow is p o i n t  t r ans i t i ve  if the orbit closure of some point in X is 

all of X,  and m i n i m a l  if the orbit closure of every point in X is all of X. 

The Stone-Cech compactification, /3T, of T possesses a natural semigroup 

structure which makes ~T into a point transitive flow. This flow is universal 

in the sense that any point transitive flow is a homomorphic image of/~T. 
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Moreover, any minimal right ideal M C /~T is universal for minimal flows. 

Thus every minimal flow X, being a homomorphic image of M, may be written 

in the form X = M / R  for some icer R on M. 

The approach taken here is to understand the properties of M / R  by studying 

the icer R. One of the key tools used is the group, G, of automorphisms of 

M. Icers are constructed and analyzed using subgroups of G. In particular the 

group, G(R),  associated to an icer is defined as a subgroup of G. In [El] G was 

viewed instead as a subset Mu of M, where u E M was a fixed idempotent.  

The group of a minimal flow was then defined up to conjugacy as a subgroup of 

Mu. The point of view taken here eliminates the asymmetrical treatment of the 

idempotents in M. However, this new approach cannot be a mere translation 

of the results in [A1], [El] and [G1], since the same flow, X,  may have several 

different representations in the form M/R; that  is, we could have M / S  ~- X -~ 
M / R  with R ~ S. 

This approach gives rise to new concepts and problems. We discuss some of 

these. The reader is assumed to be acquainted with the material in [A1], [El] 

and [G1]. 

2. N o t a t i o n  and definit ions 

We will be considering minimal flows (X, T) for a fixed group T. 

2.1 Notation: Let ~T denote the Stone-Cech compactification of the discrete 

group T. We fix a minimal right ideal M C fiT. We will use 

J = {u E M [u 2 = u} 

to denote the set of idempotents in M. We will use 

G = {a: M -+ M [ a is an automorphism} 

to denote the set of automorphisms of M. 

2.2 Definition and Notation: Let R C M x M. The actions of T,  fiT, and M 

on M extend in the obvious way to diagonal actions on M x M. When R is 

closed and invariant under T (so that  (p, q)t = (pt, qt) e R for all (p, q) E R), 

R is also invariant under the actions of 3T  and M (so that  Rz = R for all 

z E ~3T). We refer to a closed invariant equivalence relation as an icer. Note 

that  in this case M / R  is compact, and the action of T on M induces an action 

of T on M / R ,  so that  M / R  is a flow. 
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Indeed, any minimal flow X is a homomorphic image of M, so we can write 

X ~- M / R  for some T-invariant closed equivalence relation (icer) R, on M. We 

will study minimal flows by studying the corresponding icers on M. It will be 

convenient to use the following notation. 

Let R, S be icers on M with R C S. Then 

7 ~ R : M ~ M / R  and ~ R : M / R ~ M / S  

denote the canonical identification maps. 

We will make repeated use of the following proposition (whose proof appears 

in slightly different notation in [Eli). 

2.3 PROPOSITION: Let M C/~T be a fixed minima/idea/.  Then every element 

p �9 M can be written uniquely in the form p = a(u) for some automorphism 

�9 G and idempotent u �9 Y. Moreover, the semigroup structure on M is given 

by: 
~(u)~(v) = ~(~(v)). 

Given an automorphism a e G, and an icer R on M, it is natural  to consider 

the following diagram: 

M > M  

1 
M / R  * �9 , M / R  

and ask: When can we fill in the question mark so as to give an automorphism 

of M / R ?  In other words, when does a "descend" to an automorphism of M / R ?  

This will happen when 

(a(p),a(q)) �9 R ~ (p,q) �9 R. 

Writing a(p, q) = (a(p), a(q) ), this condition amounts to saying that  a(R)  = R. 

Similarly, a descends to the identity on M / R  when (p, a(p)) �9 R for all p �9 M. 

These facts motivate the following definitions: 

2.4 Definition: Let R be an icer on M. We denote 

ant(n) = {~ �9 c I ~ (n )  = n} .  

We define the g r o u p  o f  R by 

C(R) = {~ �9 C I ~r(~) C ~}, 
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where the graph of a �9 G is given by 

gr(a) = {(p,a(p)) IP �9 M} C M x M. 

It is straightforward to check, for instance by using the remarks above, that 

G(R) is a normal subgroup of aut(R). 

Having defined the group of an icer R as a subgroup of G, it is natural to 

ask: For which subgroups A C G does there exist an icer R on M such that 

G(R) = A? The answer is provided by the so-called ~--topology on G. Namely, 

such an R exists if and only if the subgroup A is T-closed. The construction of 

this topology and the proof of this result from the point of view taken here is 

interesting but not the subject of this paper. Here we will just make use of the 

result together with the fact that the product of T-closed subsets of G is again 

7-closed. We state this result for reference. 

2.5 The v-topolology on G: There exists a compact T1 topology on G such 

that: 

(a) A is a closed subgroup of G if and only if 

A = G(R) w h e r e R = g r ( A ) - U { g r ( a ) I a � 9  

(b) if A, B are closed in G, then AB is closed. 

3. Some basic results  

One of our main themes is that icers on M (and hence flows) can be studied using 

the group G and its subgroups. We begin with a basic result which facilitates 

this approach. 

3.1 PROPOSITION: Let R be an icer on M. Then 

R = I e a ( R ) ,  �9 R} 

= {(a(u),~(v)) I a/3-1 �9 G(R), and/3(u,v) �9 n}.  

Proof: Let (a(u),/~(v)) �9 R. Then 

(OL/~--I (v), v) --~ (OL(lt),/~(V))/~--I(v) �9 R Z - I ( v )  C n .  

Hence gr(a/3 -1) C R and a/~ -1 �9 G(R). Moreover, 

= �9 R v  c n ,  

and since R is transitive (a(u), a(v)) �9 R. 
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On the other hand, assume that  (a(u) ,  a(v))  E R and a/3 -1 E G(R).  Then 

(/3(V), O~(V)) ---- (/3(V), a/~ -1 (/~(V))) E gr(o~/~ -1)  C R. 

Since R is transitive it follows that  (a(u),/~(v)) E R. We have shown tha t  

R = { ( a ( u ) , ~ ( v ) ) l a 3  -1 E G(R),  and a(u , v )  E R}; 

the other equality follows immediately from the fact tha t  R is symmetric.  

3.2 PROPOSITION: Let R,  S be icers on M.  Then: 

(a) i f  ~: M / R  --+ M / S  is a homomorphism, then there exists a E G with 

a (R)  c S and ~ o TrR = ~rs o a; 

(b) i f  a E G with a (R)  C S, then there exists a homomorphism ~: M / R  --+ 

M / S  such that ~ o 7rR ---- 7rS o ~. 

Proof'. (a) Let ~: M / R  --+ M / S  be a flow homomorphism. Then gr(~) is a 

minimal subset of M / R  • M / S ,  so there exists a minimal set Y C M x M with 

(lrR x 7rs)(Y) = gr(~).  But the only minimal subsets of M x M are graphs of 

automorphisms,  so there exists a E G with Y = gr(a).  Now it is immediate 

that  ~ o 7rR = 7rs o a and a(R)  C S. 

(b) Let a E G with a(R)  C S, and (p,q) E R. Then (a(p) ,a(q))  E S and 

hence 7rs(a(p)) = 7rs(a(q)). It  follows that  

~: M / R  --+ M / 8  

p R  -+ a (p) S 

is a well-defined homomorphism with ~ o 7rR = 7rs o a.  

3.3 COROLLARY: Let R,  S be icers on M .  Then M / R  ~- M / S  i f  and only i f  

a (R)  = S for some a E G. 

3.4 COROLLARY: Let R,  S be icers on M such that M / R  ~- M / S .  Assume that 

a (R)  = R for all a E G. Then R = S. Thus in this case the representation of  

X in the form M / R  is unique. 

3.5 Definition: We say that  an icer R on M is r e g u l a r  if a (R)  = R for all 

a E G. Thus R is regular if and only if aut(R)  = G. 

3.6 Remarks: In [A2] Auslander defined the minimal flow X to be regular if, 

given x, y E X,  there exists a homomorphism ~: X -+ X such tha t  ~(x) and 
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y are proximal. In fact, R is regular in the sense of 3.5 if and only if M / R  is 

regular in Auslander 's  sense. 

Proo~ Suppose that  R is regular in the sense of 3.5, and let x = rR(a(u)), 

y = ~R(/~(v)) E M/R.  Then / ~ a  -1 E G induces an automorphism 

~: M / R  --+ M / R  

pR ~ /~a -1 (p)R. 

Clearly ~(x)v = yv and hence ~(x) is proximal to y. 

On the other hand, suppose tha t  M / R  is regular in Auslander 's sense, and 

let a E G and u E J .  Then there exists a homomorphism ~: M / R  -+ M / R  such 

that  ~(lrR(U)) is proximal to ~R(a(U)). Thus for some b E ST, 

~(TrR(ub)) = ~(TrR(u))b = ~R(a(u))b = rR(a(ub)), 

and hence ~ o 7~R = 7rR o a. It  then follows immediately that  a (R)  C R. 

3.7 PROPOSITION: Let f: X ~ Y be a homomorphism of minimal flows. 

Assume that g: X ~- M / R  where R is an icer on M. Then there exists an 

icer S on M and an isomorphism h: Y ~ M / S  such that 

(a) R c s ,  
(b) uR o g = h o f; that  is, the folowing diagram is commutative: 

X g~ M / R  

1 
y h> M / S  

This shows that  in studying extensions X -+ Y we may assume that  we are 

looking at the canonical map ~r~: M / R  -+ M / S  where R C S are icers on M. 

Thus we say tha t  M / R  is an e x t e n s i o n  of M / S  if R C S. 

Proof." Let S = {(p,q) E i x i ] f(g-l(TrR(p))) = f(g-l(7~R(q)))}. Then 

S i s  a n i c e r o n  M with R C S. The map f o g - l o ~ R :  M - +  Y i n d u c e s  an 

isomorphism a: M / S  -+ Y. Setting h = a -1 gives the desired result. 

4. T h e  r e l a t i v e  product 

4.1 Definition: Let R , S  be any relations on M. We define the r e l a t i v e  

p r o d u c t  R o S, o f  R a n d  S by 

R o S = {(p,q) E M x M [ there exists r E M with (p,r)  E R and (r,q) E S}. 
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4.2 Remark: Note that  in general the relative product  R o S of two closed 

equivalence relations is closed and reflexive, but need not be symmetric or tran- 

sitive. It is clear that  when R o S is an icer, it is the smallest icer containing 

both R and S. Thus in this case M / ( R  o S) is the infimum of the flows M / R  

and M/S .  In this section we will be interested in conditions on R and S which 

guarantee that  R o S is an icer. 

4.3 PROPOSITION: Let R, S be icers on M such that R o S is an icer on M. 

Then G(R o S) = G(R)G(S).  

Proof: Since R, S C R o S, both G(R) and G(S) are contained in G(R o S). 

But the latter is a group, so G(R)G(S) C G(R o S). 

In order to show that  G(R o S) C G(R)G(S),  let a E G(R o S) and u 2 = 

u E M. Then (u ,a (u) )  E R o S  = S o R ,  so there exists /3(v) E M with 

(u,/3(v)) E S and (/3(v),c~(u)) E R. Hence/3 E G(S) and/~a  -1 E G(R). Thus 

O~ ---- (O~/~--1)~ = (/~OL--1)--1/3 E G(R)G(S).  

4.4 Notation: It will be convenient to use the notation 

Po = {(a (u) ,a (v) )  ] a E G , (u ,v )  E J • J} = (.J a ( J  • J).  
c~EG 

Note that  P0 is an equivalence relation. 

4.5 PROPOSITION: Let R, S be icers on M such that: 

(1) PoMS C PoMR, 

(2) G(S) c a(R). 
Then S C R. 

Proof'. Let (a(u),/3(v)) E S. Then by Proposition 3.1, O~3 -1 E G(S) and 

c~(u,v) E S. Our assumptions now imply that  a/3 -1 E G(R) and (~(u,v) E 

Po M S C Po M R. Thus, again by 3.1, (a(u),/3(v)) E R. 

4.6 PROPOSITION: Let 

(1) R, S be icers on M, 

(2) G(S) C aut(R), 

(3) SMPo C RMPo. 

Then R o S is an icer on M. 

Proof." As we remarked in 4.2, RoS is always closed invariant and reflexive when 

R and S are icers, so we need only show that  it is symmetric and transitive. Let 
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(a(u), 7(w)) E R o S. Then there exists fl E G and v E J with (a(u),  fl(v)) E R 

and (fl(v), 7(w)) E S. Hence by 3.1, 

~OL -1 E G(R), (o~(It), ol(v)) e R, 

Thus 

~--1 E G(S)  and ('y(v),'y(w)) E SMPo. 

Assumption (2) together with the fact that  G(R) is normal in aut(R)  implies 

that  G(R)G(S )  = G(S)G(R) .  Therefore, there exist p E G(R)  and u E G(S)  

with "~a -1 = pu. Since u E G(S)  C aut(R) ,  it follows that  

(a (u ) , v (a (u ) ) )  E S and (u(a(u) ) ,v (a(v ) ) )  = u (a (u) ,a (v ) )  E u(R) = R. 

Combining these gives that  (a(u) ,u(a(v) ) )  E S o R. On the other hand, p E 

G(R) ,  so 

(v(~(v)),~(v)) = (v(~(v)),p~(~(v))) e R. 

Combining the last two statements gives (a(u), 'y(v)) E S o R o R = S o R. 

Finally, 

(~(v), ~(w)) E S n Po c R n P0, 

so (a(u), 'y(w)) E S o R o R = S o R. We have now shown that  R o S C S o R. 

But then 

S o R =  ( R o S )  -1 c ( S o R )  -~ = R o S ,  

and hence R o S = S o R is symmetric. It follows immediately that  R o S is 

transitive because 

( R o S )  o ( R o S )  = R o S o S o  R = R o S o  R = R o  R o S  = R o S .  

4.7 PROPOSITION: Let 

(1) R,  S be icers on M ,  

(2) G(R)G(S )  = G(S )G(R) ,  

(3) R M P o = S M P o .  

Then R o S is an icer on M .  

Proof." Let (a(u),  7(w)) E R o S. Then there exists ~ E G and v E J with 

(a(u),/3(v)) E R and (/3(v),'y(w)) E S. Hence ~a  -1 E G(R) and .yfl-1 E G(S) ,  

from which it follows that  
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Thus there exist p E G(R) and u E G(S) with ~OL - 1  : pP .  NOW (OZ(U),OZ(V)) E 

R n Po = S n Po, so 

�9 S 

because u �9 G(S). Also, (u(ct(v)),~/(v)) = (u(~(v)),pu(ct(v))) E R because 

p �9 G(R). Finally, 

('),(v), 3'(w)) �9 S n P0 = R n P0, 

so (ct(u),~/(w)) �9 S o R o R = S o R. This shows that  R o S C S o R. It  follows 

as in the proof of 4.6 tha t  R o S is an icer. 

5. D i s t a l  f l ows  

5.1 Definition: Let R be an icer on M. We say that  R is d i s t a l  if X = M / R  

is a distal flow. 

5.2 Remark: Let (c~(u), c~(v)) E P0. Then for any p E M, 

so ~rR(a(u)) and ~rR(ct(v)) are proximal points in M / R .  Thus when R is distal, 

~rR(a(u)) = 7rn(ct(v)) and hence (ct(u), a(v)) E R. This shows that  when R is 

distal, P0 C R. In fact, as we state for emphasis in the following proposition, 

this property gives a characterization of distal icers. 

5.3 PROPOSITION: Let R be an icer on M.  Then X = M / R  is a distM flow if  

and only i f  Po C R. 

Proof'. 5.2 shows tha t  if R is distal, then P0 C R. On the other hand, suppose 

that  Po C R and let c~(u),/~(v) E M with 7rR(a(u)) proximal to 7rR(13(V)). Then 

7r R(a(ub) ) = rrR(a(u) )b = ~r R(fl(v) )b = Ir R(/3(vb) ), 

for some b E/3T. But (c~(u), c~(v)) E P0 C R, so 

= c Rb c R .  

Since R is transitive it follows tha t  (c~(vb),/3(vb)) E R, and hence (c~(u), r E 

R (because u E M = vbM). Using the fact tha t  (fl(u), ~(v)) E P0 C R, it now 

follows tha t  (a(u),/3(v)) E R and rCR(O~(u)) = ~rR(/3(V)). 
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5.4 Definition: Let 

/)  = {R [ R is a distal icer on M} 

and set Sd = NReV R. It follows immediately from 5.3 that  Sd is a distal icer. 

By construction, R is a distal icer if and only if Sd C R. 

5.5 PROPOSITION: Let D = G(Sd). Then: 

(a) Sd is regular, 

(b) D is a norma/subgroup of G, 

(c) sd = Z(v)) I e D, and u, v �9 J}. 

Proof: (a) If R is distal, then for any a E G, P0 = a(Po) C a(R),  and hence 

a(R)  is distal. Thus 

(b) G(Sd) is normal in aut(Sd), which is G by part (a). 

(c) By 3.1, Sd = {(a(u),/~(v)) I a~ 3-1 E D, and (u,v) E a- l (Sd)} .  Thus 

the result follows from the fact that  a(u, v) E Po C Sd for all a E G and 

(u,v) E J x  J. 

5.6 PROPOSITION: Let X = M / R .  Then: 

(a) R o Sd is an icer on M,  

(b) G(R o &) = G(R)D.  

Proof'. (a) Since Sd is regular, G(R) C G = aut(Sd). Since Sd is distal, 

R Q Po C Po = Sd M Po. It now follows from 4.6 that  R o Sd is an icer. 

(b) This follows from part (a) and 4.3. 

5.7 PROPOSITION: Let 

(1) 
(2) 

(3) 

Then 

(a) 
(b) 

R, S be icers on M,  

S be distal, 

G(R)G(S) be a group. 

R o S is an icer on M, 

G(R o S) = G(R)G(S) .  

Proof: (a) gr(G(R)G(S))  is an icer on M by (3) and 2.5. Thus 

N = gr(G(R)G(S))  o Sd 
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is an icer on M (by 5.6). We will show that  N = R o S and hence that  R o S is 

an icer. First note that  

gr(G(R)G(S)) = gr(G(S)G(n))  c R o S, 

so that  N C R o S o Sd = R o S (because Sd C S by (2)). On the other hand, 

N -- {(a(u),/~(v)) 

= { ( ~ ( ~ ) , / 3 ( v ) )  

since P0 C Sd C N. Therefore 

n = {(~(~),~(v)) 

c {(~(~),~(v)) 

0l~ -1  �9 G(N), a(u, v) �9 N}  

a/~ -1 �9 G(N)}  

01~ -1 �9 G(R),ol(u,v) �9 R} 

~--1 �9 G ( N ) }  = N 

and similarly S C N. Since N is an equivalence relation it follows that  RoS C N 

and hence R o S = N. 

(b) This follows from part  (a) and 4.3. 

5 . 8  PROPOSITION: Let 

(1) 7) = {R[ R is a distal icer on M }, 

(2) ~ = {H ] H is a dosed subgroup of G with D C H}. 

(3) 
~:19--+ 6 

N ~ G(N), 

(4) 
r G --+ ~9 

A -4 Sd o gr(A). 

Then 

(a) qo is bijective, its inverse being the map ~b, 

(b) r  is regular if and only if A is normal. 

Proof." The fact that  qo is injective follows immediately from 4.5. The rest of 

the proof is left to the reader. 

6. Distal  ex tens ions  

6.1 Definition: Let R, S b e i c e r s o n  M with R C S. We say that  R C S i s  

distal  if 7rR: M / R  --+ M / S  is distal. In other words, R C S is a distal extension 

if M / R  is a distal extension of M/S.  

In analogy with Proposition 5.3, the following proposition gives a characteri- 

zation of distal extensions. We leave the proof to the reader. 
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6.2 PROPOSITION: Let R C S be icers on M.  Then R C S is a distal extension 

i f  and only i f  R n Po = S n Po. 

6.3 COROLLARY: Let R, N, S be icers on M with R C N C S. Then R C S is 

distal i f  and only i f  R C N and N C S are both distal. 

Proof: This follows immediately from 6.2. 

6.4 PROPOSITION: Let A/" be a collection 

S = n A/" is a distal extension of R. 

of distal extensions of R. Then 

Proof'. By 6.2, N N P o  = R N P o  for all N �9 H .  Thus S N P o  = NNEA;(NNP0) 

= NNe]v(R N P0) = R n Po, and S is a distal extension of R. 

6.5 Definition: Let R be an icer on M, and 7s the collection of distal extensions 

of R. Then we define R* = n 7s Note that  by 6.4, R* is a distal extension of 

R. 

6.6 PROPOSITION: Let N, R be icers on M with N C R. Then N is a distal 

extension of R ff  and only i f  R* C N.  

Proo~ ~ This is clear from the definition of R*. 

If R* C N C R, then since R* C R is distal, it follows from 6.3 tha t  

R* C N and N C R are both distal. 

6.7Remark:  Let R be an icer on M. Then it is easy to check that  (a(R))* = 

a(R*)  for all a �9 G. It follows immediately from this that  aut(R) C aut(R*). 

6.8 PROPOSITION: Let R,  N, S be icers on M such that: 

(1) S, N c R,  

(2) N is a distal extension of R,  

(3) G(S) C G(N) .  

Then S C N. 

Proof: 

Thus 

Using assumption (2) and 6.2, we see that  Po n S C P0 N R = P0 n N.  

s = -1  e �9 S }  

C {(a(u) ,~(v) )  I a/3 -1 �9 G ( N ) , a ( u , v )  �9 N }  = N. 



Vol. 148, 2005 ICER APPROACH TO MINIMAL FLOWS 251 

6.9 PROPOSITION: Let 

(1) R, N be icers on M, 

(2) N C R. 

Then R* o N is an icer on M. 

Proof" G(N) C G(R) C aut(R) C aut(R*) by 2.4 and 6.7. Moreover, 

N nPo C R N P o  = R* NPo. 

Thus 

6.10 

(1) 
(2) 
(3) 
(4) 

Then 

it follows from 4.6 tha t  R* o N is an icer. 

PROPOSITION: Let 

N, R, S be icers on M, 

S C R be distal, 

G(N)G(S) be a group, 

N C R .  

N o S is an icer on M. 

Proof" gr(G(N)G(S)) is an icer on M by (3) and 2.5. In addition, 

c c R, 

so No = gr(G(N)G(S)) o R* is an icer on M (by 6.9). We will show that  

N o -- N o S and hence that  N o S is an icer. First note that  

gr(G(N)G(S)) C N o S, 

so tha t  No C N o S o R *  = N o S  (because R* C S by (2) and 6.6). On the other 

hand, R* C No C T~, so No is a distal extension of/~ by 6.6. But  G(N) C G(No) 

and G(S) C G(No), so it follows from 6.8 that  N C No and S C No. Since No 

is an equivalence relation, it follows that  N o S C No and hence N o S = No. 

6.11 PROPOSITION: Let 

(1) 

(2) 
(3) 

Then 

S be a distal extension of R, 

N = {N [ N is an icer with S C N C R}, 

74 = {H I H is a closed subgroup of G with G(S) C H C G(R)}. 

N -4 G(N) 
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is bijective, its inverse being the map r defined by r  = S o gr(H) for all 

H ETi. 

Proof'. For any H 6 ?-l, gr(H) C gr(G(n))  C R. Since G(S) C H -- G(gr(H)) ,  

G ( S ) H  = H is a group and it follows from 6.10 that  S o gr(H) is an icer. Thus 

the map r is well-defined. Indeed ~ ( r  = G(S o gr(H))  = G ( S ) H  = H. 

On the other hand, if N 6 H ,  then ~b(qo(N)) = Sogr (G(Y) ) .  But Sogr(G(N))  

is a distal extension of R whose group is G(N),  so it follows by applying 6.8 

twice that  S o gr(G(N))  = N.  

7. T h e  F u r s t e n b e r g  s t r u c t u r e  t h e o r e m  

Finally, we describe the Furstenberg structure theorem in this context; here 

the so-called Furstenberg towers are constructed in a natural way using relative 

products. 

7.1 Definition: Let X = M / N  and Y = M / R  be flows with N C Rice rs .  

We say that  X is an a l m o s t  p e r i o d i c  e x t e n s i o n  o f  Y (N C R is a l m o s t  

pe r iod i c )  if: X is a distal extension of Y and G(R)'  C G(N) .  

7.2 THEOREM (Furstenberg Structure Theorem): Let 

(1) X = M / R  be a minimal distal flow, 

(2) u be the smallest ordinal with G ~ C G(R),  

(3) G ~ = G, R~ = gr(G a) o R for alt a <_ u. 

Then 

(a) Ra is an icer for all a, 

(b) R o = M x M ,  

(c) = R,  

(d) R~+I C R~ is an almost periodic extension for a l Ia  + 1 <_ u, 

(e) R~ = N~<~ R~ for all limit ordinals a <_ u. 
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